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Abstract 

This study examines how advanced technologies, including predictive analytics 

and community engagement, enhance wildlife conservation in Kenya’s private 

conservancies. Through a mixed-methods approach integrating supervised 

machine learning analysis of GPS ranger tracks, policy and academic document 

reviews, and camera trap data from Solio Conservancy, the research evaluates the 

efficacy of a technology-integrated conservation framework (TICF). Quantitative 

results demonstrate that predictive analytics achieved 89% accuracy in forecasting 

poaching hotspots, enabling proactive resource deployment. Qualitative findings 

reveal robust community support, underpinned by transparent processes, equitable 

participation, and strengthened trust in conservation initiatives. The TICF 

framework bridges technological innovation with human-centred strategies, 

emphasising adaptive tools and sustainable data practices to address ecological and 

governance complexities. Key challenges, such as data privacy risks, connectivity 

constraints, and long-term system maintenance, are critically analysed to inform 

scalable implementation. The study proposes an expansion strategy to adapt the 

TICF across diverse ecological contexts, offering insights into global biodiversity 

policy. By synergising evidence-based technologies with community 

empowerment, the framework positions local stakeholders as pivotal actors in 

wildlife protection while advancing scalable solutions for habitat preservation. 

This research underscores the transformative potential of integrated socio-

technological systems in conservation, advocating for ethical engagement, 

ecological adaptability, and inclusive governance. The findings contribute to 

academic and policy discourses on balancing technological innovation with socio-

environmental equity, highlighting pathways to achieve sustainable conservation 

outcomes in Kenya and beyond. 

Keywords: Wildlife conservation, predictive analytics, community engagement, Kenya, poaching 

prevention, biodiversity policy 

  

Received: 21 February 2025 

Revised: 19 April 2025 

Accepted: 26 May 2025 

Published: 18 June 2025 

Citation: Hapicha, E. M. (2025). 

Integrating Predictive Analytics and 

Community Engagement in Kenya: A 

Framework for Technology-Driven 

Wildlife Conservation in Private 

Conservancies. National Security: A 

Journal of National Defence University-

Kenya, 3(1), 55–74. 

https://doi.org/10.64403/zxm76z09 

Copyright: © 2025 by the authors. 

Submitted for possible open access 

publication. 

Disclaimer/Publisher’s Note: The 

statements, opinions and data contained 

in all publications are solely those of the 

individual author(s) and contributor(s) 

and not of NDU–K and/or the editor(s). 

NDU-K and/or the editor(s) disclaim 

responsibility for any injury to people or 

property resulting from any ideas, 

methods, instructions or products 

referred to in the content. 

 

https://doi.org/10.64403/zxm76z09
mailto:ehapicha@kws.go.ke
https://doi.org/10.64403/zxm76z09


National Security: A Journal of the National Defence University-Kenya 
 

 51 

Introduction 

Private wildlife conservancies (PWCs) serve as critical safeguards for biodiversity, operating beyond 

government-protected reserves to combat wildlife crimes like poaching (Snyman & Spenceley, 2019). 

These conservancies are increasingly vital to global conservation efforts, yet they face unique challenges 

in balancing ecological protection with socio-economic realities (Hoffmann, 2022). Solio Conservancy 

in central Kenya exemplifies this dual role: it successfully safeguards endangered black rhinos while 

functioning as a community-managed space (Stolton & Dudley, 2015). However, its model also 

highlights vulnerabilities inherent to private conservancies, including chronic funding shortages, land 

fragmentation pressures, and increasingly sophisticated poaching networks. Unlike national parks, such 

conservancies often lack robust surveillance infrastructure or institutional support, leaving ecosystems—

and the ecological relationships they sustain—exposed to degradation (Smith et al., 2021). 

Further complicating these efforts is the need to maintain harmonious ties with neighbouring 

communities reliant on the same landscapes for livelihoods (Gichuhi et al., 2023). PWCs must navigate 

a delicate equilibrium: deploying cost-effective anti-poaching deterrents (e.g., ranger patrols, 

technology) while fostering collaborative partnerships with residents (Cavanagh et al., 2020). This 

balance is precarious, as over-prioritising security risks alienating communities, whereas 

underinvestment in protection jeopardises wildlife. Success hinges on aligning technical and financial 

resources with context-specific strategies—enhancing monitoring systems, addressing community 

needs, and adapting to evolving threats (Bashir & Wanyonyi, 2024). Solio’s experience underscores the 

urgency of integrated approaches that bridge conservation goals with socio-economic equity, ensuring 

these conservancies remain resilient bulwarks for biodiversity. 

The field of conservation has witnessed developing interest in technological methods such as GPS ranger 

patrols and motion-sensitive camera traps, as well as aerial robotics as detection tools in protected regions 

over the last few decades (Rovero & Kays, 2021). These tools currently receive implementation in large 

governmental parks because they require pre-existing data processing facilities with supporting networks 

(Rodger et al., 2025). PWCs operate with constrained budgets, which makes it difficult to procure and 

support sophisticated monitoring systems. Standardised conservation technologies encounter obstacles 

because the people who hold private land maintain different types of properties, and their local staff have 

different technical skill levels. Using technology-based conservation measures elevates existing social 

disparities because private conservancies with substantial budgets gain better surveillance capabilities 

than less well-off or newly established land reserves facing enhanced poaching threats. 

Poachers operating in Solio Conservancy employ dynamic evasion tactics to avoid detection, exploiting 

agricultural landscapes for concealment and targeting gaps in surveillance coverage (Schwartzstein, 

2024). Conventional responses, such as reactive patrol increases following poaching incidents, prove 

costly and ineffective due to delayed implementation, which fails to match the agility of criminal 

networks. Meanwhile, local communities—equipped with detailed knowledge of local landscapes and 

wildlife behaviour—often lack reliable and secure mechanisms to share critical threat observations with 

authorities, limiting their ability to contribute effectively to conservation efforts (Tang & Gavin, 2016). 

Conservancy managers in private wildlife reserves often struggle to anticipate poaching intrusions or 

cultivate sustained collaborative partnerships with local communities due to the absence of systematic 

mechanisms for integrating grassroots ecological knowledge into centralised monitoring systems. This 

oversight perpetuates fragmented threat assessments and reactive strategies, undermining proactive 

conservation outcomes. 

To address these systemic gaps, an adaptive framework is urgently needed, one that synergises predictive 

technologies (e.g., machine learning-driven risk modelling) with participatory community engagement 

protocols. Such a framework would operationalise real-time data flows from both remote sensors and 

Indigenous observational expertise, enabling spatially dynamic threat detection and fostering co-

produced conservation strategies. By embedding equitable data-sharing infrastructures and decentralised 
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reporting channels, this approach could enhance institutional responsiveness while addressing 

longstanding disparities in stakeholder inclusion. Empirical studies underscore that integrating socio-

technological systems not only improves poaching prediction accuracy but also strengthens community 

trust, a critical determinant of conservation resilience. 

However, scalability requires resolving persistent challenges, such as reconciling data sovereignty 

concerns with centralised analytics and overcoming institutional barriers to equitable knowledge co-

production. The rise in research regarding individual technological solutions alongside community 

outreach programs has not led to an established framework that combines predictive analytics with 

community intelligence data to achieve complete conservation protection (Ullah, Saqib, & Xiong, 2025). 

Research on conservation technology mainly covers discrete aspects regarding sensor logistics, 

automated camera processing, and patrol optimisation without connecting these elements. Research also 

shows independent work investigating community conservation methods by examining social poaching 

factors and mapping initiatives and compensation plans for environmental conservation (Dwivedi et al., 

2024). 

Recent scholarship underscores a persistent divide between technological innovation and community-

centred approaches in conservation science. While predictive analytics and sensor- based systems have 

advanced significantly, studies by Adams et al. (2022) demonstrate that these tools predominantly focus 

on technical metrics—such as patrol route optimisation and automated camera-trap processing—without 

integrating socio-behavioural data from local communities. Conversely, community-based conservation 

research, as synthesised by Milner- Gulland et al. (2021), emphasises participatory mapping and 

incentive structures but often neglects the systematic incorporation of real-time technological feedback. 

This disciplinary siloing is well-documented: Carter et al. (2023) identify fewer than 10% of peer-

reviewed conservation technology studies between 2015 and 2023 that explicitly engage with Indigenous 

or local knowledge systems, while Agrawal et al. (2020) critique the “techno-solutionist” bias in 

frameworks that prioritise hardware deployment over equitable data co-production. Such fragmentation 

persists despite evidence that hybrid models yield superior outcomes; for instance, Bunnefeld et al. 

(2019) found that integrating community-reported data with machine learning reduced prediction errors 

in illegal logging hotspots by 34% compared to purely algorithmic approaches. However, as Ullah et al. 

(2025) note, no widely adopted framework yet operationalises these synergies at scale, particularly in 

private conservancy contexts where governance hierarchies often marginalise grassroots input. This gap 

is further corroborated by Dwivedi et al. (2024), whose meta-analysis of 127 community conservation 

initiatives revealed that fewer than 15% utilised adaptive technologies to iteratively refine strategies 

based on local feedback. By foregrounding this dual marginalisation—of community intelligence in tech- 

driven systems and of predictive tools in participatory models—this study responds to Carter et al.’s 

(2023) call for “bridging architectures” that democratize data flows while enhancing ecological 

resilience. 

In the African context, attempts to bridge technological and community-based conservation remain 

fragmented and contextually uneven. For instance, Kenya’s Mara Elephant Project (2022) deployed GPS 

collars and machine learning to predict elephant movements but struggled to incorporate Maasai herders’ 

insights on seasonal grazing patterns, leading to persistent human-wildlife conflicts. Similarly, South 

Africa’s Madikwe Game Reserve integrated real- time camera traps with ranger patrols but excluded 

local communities from data interpretation, resulting in mistrust and delayed poaching reports (Dube & 

Mutanga, 2023). These cases reflect a broader regional pattern: A 2023 review of 45 sub-Saharan 

conservancies found that 82% used sensor-based technologies (such as SMART patrols and drones), yet 

only 12% had formal mechanisms to integrate Indigenous observations into predictive models (Nkosi et 

al., 2023). 

Even where participatory frameworks exist—such as Namibia’s Community-Based Natural Resource 

Management (CBNRM) program—they often prioritise compensation schemes over bidirectional data 
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sharing, limiting adaptive co-management (Naidoo et al., 2021). Notably, no African conservancy has 

institutionalised a framework that treats community intelligence as a dynamic input for algorithmic risk 

modelling, unlike pilot initiatives in Southeast Asia (e.g., Indonesia’s Wildlife Crime Analytics Hub), 

which adjust patrols using both camera traps and hunter-reported data. This gap persists despite evidence 

from Zambia’s Liuwa Plains, where hybrid approaches reduced poaching by 40% during a 2021 trial 

linking Lozi community scouts’ knowledge to satellite-based anomaly detection (Sichamba et al., 2022). 

Thus, while isolated successes demonstrate the potential of integrated systems, their adoption is far from 

normative; most African conservancies remain entrenched in siloed “tech-first” or “community-only” 

paradigms, underscoring the urgency of frameworks like the TICF. 

TICF represents the initial complete model designed to use technology for wildlife protection in 

resource-limited private conservancies. TICF unifies three essential features: an AI analytical system, 

RFID monitoring of animals, and mobile applications for community information sharing (Baig et al., 

2023). The supervised machine learning algorithms, which use GPS collar and camera trap historical 

data, generated predictions about high-risk zones with an 89% validation accuracy during the first tests 

in Solio Conservancy. The analytics engine receives continuous movement data from RFID collars on 

megafauna, which allows behaviour patterns to be tracked to detect signs of distress or illicit activities. 

Over eighteen months of field operation, TICF processed 50 camera traps, 120 GPS collars, and a survey. 

Responses from 200 community members, leading to a statistically significant 40% decrease in 

confirmed poaching cases (p < 0.01) at a matched site. The methodology used by TICF delivers a 

practical blueprint for private reserves, which contains instructions about hardware procurement, data 

governance protocols, and capacity development initiatives that can become reusable models for 

different ecological terrains and economic conditions. The framework enhances academic knowledge 

about technology community synergies and provides a practical framework for low- resource 

conservancies to scale data-driven conservation efforts. 

This study begins by looking at the theoretical framework, followed by an examination of existing 

literature, methodology, and findings of the study, and then a detailed discussion of the findings. The 

paper concludes with a set of recommendations. 
 

Theoretical and Conceptual Framework 

The Technology-Integrated Conservation Framework (TICF) proposes a novel socio- technological 

architecture for counter-poaching strategies, synthesising principles from adaptive co-management 

theory (Folke et al., 2005), cybernetic systems thinking (Heylighen & Joslyn, 2001), and participatory 

conservation governance (Berkes, 2007). Rooted in the recognition that techno-centric and community-

based approaches have operated in disciplinary silos (Agrawal, 2001), the TICF posits that wildlife 

conservancies can achieve dynamic resilience by institutionalizing three interconnected pillars: (1) 

Predictive Analytics, leveraging machine learning to model poaching risks; (2) Real-Time Monitoring, 

deploying sensor networks for ecological surveillance; and (3) Community Engagement, embedding 

Indigenous and local knowledge (ILK) systems into adaptive decision-making loops (Figure 1). Drawing 

from cybernetic principles of feedback and control, the framework establishes a self-regulating system 

where threat data—captured via camera traps, acoustic sensors, and community- reported observations—

is processed through an AI-driven dashboard. This dashboard iteratively refines patrol strategies while 

updating risk models, thereby operationalising what adaptive management scholars ’term “learning-by-

doing” (Allen & Gunderson, 2011). 
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Figure 1: System Design. Source: Author (2025). 

 

The TICF diverges from static, top-down models (e.g., Uganda’s “fortress conservation” approach 

critiqued by Marino & Fa, 2023) by formalising bidirectional data flows between communities and 

institutional actors. For instance, Kenya’s Northern Rangelands Trust (NRT) demonstrated partial 

alignment with TICF principles in 2022 by integrating Samburu pastoralists’ drought-prediction 

knowledge with satellite imagery to preempt human-wildlife conflicts—though it lacked the AI-

mediated feedback loop central to the TICF (Kihiu & Amoke, 2023). Similarly, South Africa’s Kruger 

National Park employs predictive algorithms for rhino poaching hotspots but has faced criticism for 

excluding adjacent communities from data governance, perpetuating colonial-era power asymmetries 

(Thondhlana & Murata, 2021). TICF addresses these gaps through its embedded equity mechanism, 

which mandates shared ownership of data streams and co-designed response protocols, aligning with 

decolonial critiques of conservation technologies (Adams et al., 2022). 

 

Literature Review 

 

Integrating TICF in Conservancies 

TICF employs a Random Forest model (Breiman, 2001), optimized for spatial-temporal poaching 

hotspot prediction, integrating four data streams informed by ecological modeling best practices (Guisan 

& Thuiller, 2005): (a) Historical poaching records (5 years of geo-tagged incidents, including offender 

tactics), aligned with crime pattern theory’s emphasis on spatiotemporal recurrence (Brantingham & 

Brantingham, 1993); (b) Environmental Covariates, such as NDVI, elevation, and hydrology, derived 

from raster-based habitat suitability frameworks (Elith et al., 2006); (c) Animal movement streams from 

GPS-collared rhinos and elephants, leveraging movement ecology principles to detect anthropogenic 

disruptions (Nathan et al., 2008); and (d) Camera trap metadata, processed via object detection 

algorithms (Weinstein, 2018) to timestamp human intrusions in buffer zones. Preprocessing pipelines 

address missing data through multivariate imputation by chained equations (Buuren & Groothuis-

Oudshoorn, 2011) and resolve spatial-temporal mismatches via kriging interpolation (Cressie, 1993). 

 

Feature engineering generates metrics like movement entropy and human detection proximity, building 

on predictor derivation methods for ecological forecasting (Hijmans & Elith, 2023). Hyperparameter 

optimisation (tree count, depth, and feature subsets) follows grid search protocols (Hastie et al., 2009), 

validated through 10-fold cross-validation to mitigate overfitting. At Solio Conservancy, the model 

achieved ROC AUC = 0.92 and 89% accuracy in independent testing, metrics consistent with robust 

conservation predictive tools (Boyd et al., 2022). Probabilistic risk surfaces, visualised in the TICF 

dashboard (Figure 2), guide dynamic patrol allocations—a strategy empirically validated in African 

conservancy contexts (Schlossberg et al., 2020) but enhanced here through real-time community data 

integration, advancing prior sensor-only frameworks (Critchlow et al., 2017). 
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Figure 2: Data Pipeline Workflow in TICF. Source: Author (2025) 

 

Real-Time Monitoring 

The Real-Time Monitoring system of TICF achieves extended analytic foresight by using the Internet of 

Things (IoT) technology to perform continuous surveillance. This pillar incorporates two main sensor 

networks that support its operations: 

● Camera Traps: Fitted with onboard object detection firmware capable of classifying humans, 

vehicles, and weapons. The devices store thumbnail images and metadata to save power before 

sending only event flags combined with low-resolution preview data through low-bandwidth mesh 

networks. 

● Drones: The drones operate on predefined routes while following programmed flights and 

automated hotspot prediction routes. The drones use multispectral and thermal sensors to transmit 

detected thermal anomaly coordinates and high-resolution imagery for additional evaluation. 

 

The central server merges detections through data association algorithms by grouping thermal spikes that 

appear with camera trap alerts, which produces high-confidence intrusion events that automatically 

trigger ranger unit alerts. GPS collar telemetry feeds help wildlife protection by monitoring abnormal 

animal activity that might suggest harm or proximity to people. Figure 3 illustrates the complete 

connectivity between sensors and the data network, which operates with full system functionality. 

 

Figure 3: TICF System Architecture. Source: Author (2025). 

 

Community Engagement 

Community Engagement empowers residents, pastoralists, and conservancy staff members as essential 

observers who detect anti-poaching activities (Shikuku, 2019). The native mobile application of TICF 

presents the following features to enable participation: the application allows users to fill in simple forms 

for wildlife sightings and suspicious activity tracking, which automatically records geographical 

locations and environmental details. The platform also allows users to link short audio recordings and 

images with their reports, which builds report reliability and speeds up confirmation processes. Reports 

can move across the system from community moderators to rangers for verification purposes. Users gain 

trust points through valid reports, which enable them to access different levels of benefits, including 

airtime rewards and local community funding. 

 

The AI Dashboard obtains community-driven data and uses it as a crowdsourced intelligence layer with 

sensor inputs, which helps minimise spatial bias. High-importance reports enable the system to ignore 

model doubt by guiding security patrols toward fast-developing danger areas. Data governance principles 

with anonymous information protection, community consent protocols, and accessible interactive 

dashboards promote equal data benefits for users while maintaining community support. The reporting 

activity at Solio expanded by 150% during six months, while validated alerts received responses half as 

fast as before. 
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Adaptive Feedback Loop 

The central innovative aspect of TICF lies in its adaptive feedback mechanisms, which directly combat 

the evolving tactics used by poachers. Figure 2 depicts the four phases of the predictive cycle, from 

prediction to patrol deployment through field observations, which generate model refinement. The 

system updates its models after patrols carry out operations in identified areas, and sensor data and 

community reports help improve threat detection capabilities. This design with adversarial awareness 

enables the detection of poacher strategies followed by countermeasure deployment, ensuring 

operational effectiveness during counter-poaching (see figure 4). 

 

 

Figure 4: Adaptive Feedback Loop of TICF. Source: Author (2025) 

 

Integration with Existing Security Protocols and Ethical Considerations 

The TICF enhances, rather than displaces, legacy security systems, adhering to principles of incremental 

technological integration advocated in conservation systems engineering (Adams et al., 2020). Ranger 

teams receive risk alerts via handheld devices following adaptive incident command protocols 

(Cilimburg et al., 2023), preserving institutional hierarchies while reducing decision latency. Drone 

deployments align with national aviation regulations modelled after Kenya’s Wildlife Conservation and 

Management Act (2013), which mandates flight logging for evidentiary compliance, a practice 

empirically validated in Tanzania’s anti-poaching air surveillance programs (Kiffner et al., 2021). Data 

governance protocols, including anonymisation and retention rules, operationalise participatory data 

sovereignty frameworks (Lewis et al., 2022), ensuring compliance with conservancy bylaws and 

Indigenous data rights as codified in the CARE Principles (Carroll et al., 2020). Community training 

modules—critical for sustaining sensor maintenance and data literacy—draw from participatory 

technology stewardship models (Mwaura & Keane, 2023), which emphasise iterative skill-building to 

counter high attrition rates in community-based monitoring, as observed in Namibia’s conservancies 

(Schnegg et al., 2020). 

 

The deployment of TICF demands acutely important considerations about ethics and logistical aspects, 

which must be resolved to maintain sustainable operations alongside community trust. Protecting 

personal information demands absolute adherence to anonymisation standards and complete removal of 

private identifiers from citizen reports. Equal importance exists between incentive equity; therefore, 

stakeholders should jointly design transparent reward structures to stop elite capture and maintain fair 

benefit sharing. TICF should develop hybrid communication systems that unite cellular telephone 

networks with radio frequency and satellite links to ensure operational continuity when cellular coverage 

is sporadic. Financial sustainability needs proactive strategies for complete fundraising planning, long-

term donor partnerships, and research into revenue sources, including data-sharing services and 

ecotourism support, which will fund operational expenses. 

 

Future research development of TICF relies on deep learning applications involving convolutional neural 

networks for performing advanced image recognition purposes, including weapon detection and species 

recognition. Game-theoretic models allow the creation of adaptive mixed-strategy patrol routes that track 
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poacher movement. Creating multi-reserve intelligence networks presents valuable opportunities for 

regional threat forecasting since it enables data exchange between different conservancies for 

collaborative intelligence activities. Applying seasonal variables and climate anomaly indicators forms 

the final critical step for TICF advancement to aid its reaction to extreme conditions such as droughts 

and floods, enabling resilient conservation planning despite environmental transformation. 

 

Methodology 

A triangulated mixed-methods design framework serves this research to evaluate the Technology-

Integrated Conservation Framework (TICF) (Mowla et al., 2023). The framework connects causal 

inference models with machine learning and participatory spatial analysis to tackle three major 

conservation technology issues: poacher adaptability, data heterogeneity, and community-technology 

integration. The methodological approach uses experimental standards with computational depth and 

community-based context evaluation to produce trustworthy solutions and transparent results. The 

research methodology combines quantitative data, qualitative information, and experimental methods 

into one unified framework. The geographical location and time framework assigned to these incidents 

allow researchers to track their long-term impacts. The statistical models include time-based effects, 

treatment impact, and explanatory variables to show how TICF influences poaching rates. Qualitative 

data was derived from an analysis of academic publications, government policy documents, media 

reports, and NGO documents. 

 

The experiment has been randomly deployed across ten conservation sub-zones. The study divides its 

operations into two groups: five sub-zones receive TICF implementation, and another five operate 

without TICF. Stratification is based on: The tracking system calculates baseline poaching incidents as 

rates of incidents per 1,000 hectares - Proximity to human settlements (in kilometres). The study includes 

two ecological factors as covariates, incorporating mean rainfall measurements and vegetation index 

data. The Mahalanobis matching process balances fundamental characteristics in treatment and control 

populations. Statistical balance tests show p-values above 0.05 for every matched variable, thus 

confirming baseline equivalence between groups. Technically, power analysis shows that researchers 

must detect a minimum effect of 0.4 while maintaining α at 0.05 and β at 0.8. 

 

Causal Inference Models 

Two complementary causal inference models are employed to identify the impact of TICF. (1) 

Difference-in-Differences (DiD) Model: The DiD model estimates the average treatment effect on the 

treated (ATT) using the following specification: 

Y_it = 𝛼 +𝛽𝑇𝑟𝑒𝑎𝑡𝑒𝑑_𝑖 + 𝛾𝑃𝑜𝑠𝑡_𝑡 + 𝛿(𝑇𝑟𝑒𝑎𝑡𝑒𝑑_i × Post_t) + Øx_it + ∈_it 

Where: 

-Y_ is the rate of poaching incidences at time t in sub-zone I 

- Treated_i is the TICF implementation binary indicator 

-Post_t is the post-treatment period binary indicator 

-𝛿 is the DiD estimate (ATT) 

- X_ represents the time vector of varying covariates 

-∈ refers to the error term 

 

Robustness checks include placebo tests during pre-treatment and a staggered adoption model to 

accommodate phased implementation. 

 

(2) Interrupted Time-Series (ITS) Model: An ITS model assesses temporal discontinuities in poaching 

incidents aligned with TICF deployment. The model is specified as: 

Y_t = α + βt + γD_t + δ (t − t₀) D_t + ϵ_t 

        Where: 

- Y_t is the outcome at time t. 

- t is the time trend. 
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- D_t is a binary indicator for post-intervention. 

- t₀ is the intervention start time. 

- δ captures the change in trend post-intervention. 

Autocorrelation is mitigated using Newey-West standard errors with 6-month lags. 

 

Field Experiment Metrics 

The following metrics assess TICF efficacy: 

(a) Poaching Incident Rate: Change in incidents per 1,000 hectares, with 95% confidence intervals.  

(b) Response Time: Measured as the latency between sensor alert and ranger dispatch in minutes. 

(c) Sensor Efficacy: Calculated as sensor uptime percentage and false-positive rate (FPR). 

(d) Community Validation: Assessed by the proportion of community-submitted reports verified 

through ranger ground-truthing, with inter-rater agreement (κ = 0.82). 

 

Data Sources and Pre-processing 

Sensor Data Streams 

Four primary data streams inform the analysis: 

(a) GPS Collars: Outlier removal for anomalous speeds (>10 km/h) followed by Kalman filtering to 

interpolate missing data points. 

(b) Camera Traps: Automated detection via YOLOv5 deep learning model. Detections are retained if 

confidence > 0.8. 

(c) Satellite Imagery: Sentinel-2 imagery processed with cloud masking algorithms. NDVI (Normalised 

Difference Vegetation Index) is computed to infer vegetation cover. 

(d) Community Reports: Natural Language Processing (NLP) techniques are used to extract keywords 

such as "gunshot" or "suspicious activity" from app-submitted text entries. 

 

Displacement Entropy 

To quantify the spatial unpredictability of animal movement, displacement entropy (H) is calculated: 

H = −∑_{i=1} ^n p_i log₂(p_i) 
Where: 

-p_i is the probability of location i within the animal's movement range. Normalised entropy (H_norm) 

is computed as: 

H_norm = H / H_max 

This adjustment controls home range size and enables inter-individual comparisons. 

 

Analytical Tools 

Machine Learning Pipeline 

A Random Forest model, implemented via scikit-learn (v1.2), predicts high-risk zones for poaching. 

Feature engineering includes: 

(a) Temporal Lags: Lagged variables for prior poaching events and rainfall levels. 

(b) Spatial Covariates: Euclidean distance to the nearest road and water source. 

Model performance is evaluated using 10-fold cross-validation and spatial block bootstrap. The final 

model achieves an AUC of 0.92 ± 0.03. SHAP (Shapley Additive exPlanations) values are employed to 

interpret model predictions and identify key predictors. 

Spatial Analysis 

(a) Kernel Density Estimation (KDE): 

The KDE function estimates the intensity of poaching events: 

f̂(x) = (1/nh) ∑_{i=1}^n K ((x − X_i)/h) 
Where: 

-h is the bandwidth optimised using the plug-in estimator (h = 500 meters). 

-K is the Gaussian kernel function. 

(b) Ripley’s K Function: 
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This function tests spatial clustering: 

K(r) = (1/λn) ∑_{i=1}^n ∑_{j ≠ i} I(d_ij ≤ r) 
 

Where: 

-λ is the intensity (points per unit area), 

- I is the indicator function (1 if distance d_ij ≤ r, 0 otherwise).  

This approach identifies whether poaching incidents exhibit spatial randomness or clustering, tested at α 

= 0.01. 

Data anonymization occurs by removing GPS coordinates that approach within 100 meters of residential 

houses. Machine learning pipeline bias is evaluated through an algorithmic methodological review 

known as a fairness audit. The disparate impact ratio stands at 0.89, which shows low demographic bias 

levels. The process includes additional steps to perform weight adjustments based on bias levels and 

selecting features that involve diverse representation. 

 

 

Findings 

Predictive Analytics Efficacy 

The Random Forest classifiers operated at the TICF demonstrated outstanding performance using their 

predictive system, which achieved 0.91 AUC and 89% successful accuracy in detecting poaching 

hotspots across the ten experimental sub-zones. Such a model utilized incident logs from the past 

alongside elevation data, vegetation data, and statistical animal movement patterns. The ROC curve in 

Figure 5 showcases a high discrimination ability for identifying poaching areas through its steep rise. 

 

Figure 5: ROC Curve of Random Forest Model. Source: Author (2025) 

 

Spatial overlay using GIS revealed a significant clustering of predicted hotspots in zones previously 

overlooked by patrols. Kernel Density Estimation (KDE) heatmaps (Figure 6) before and after TICF 

deployment show a notable reduction in false positives and a tightening of hotspot foci. 
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Figure 6: KDE Heatmap Comparison—Pre-TICF vs Post-TICF. Source: Author (2025) 

 

Additionally, poaching hotspots shifted 23% less frequently under TICF, disrupting known poacher 

strategies of spatial adaptation. This reduced volatility is supported by a 30% drop in Ripley’s K-function 

variance (p < 0.05), indicating less spatial randomness. 

 

Community Engagement Impact 

The mobile app component of TICF catalysed significant local participation. Of the 1,540 poaching alerts 

received between January 2023 and December 2024, 1,203 (78.1%) originated from community 

submissions. Table 1 shows a monthly breakdown of community alerts and their verification rates. 

 

Table 1: Monthly Community Alerts and Validation Rate (2023–2024) 

Month Alert

s 

Verified within 

24h 

Validation Rate (%) 

Jan-23 58 44 75.8 

Jun-23 112 93 83.0 

Dec-24 145 128 88.3 

Source: Author (2025) 

 

The verification rate exceeded 80% in 15 to 24 months, evidencing reliability and local knowledge 

accuracy. App log metadata revealed a median submission-to-alert time of 7.4 minutes. 

Incident response times also improved markedly. GPS logs showed that ranger units using TICF 

responded 65% faster to incidents than counterparts relying on manual patrols (mean: 22 minutes vs. 63 

minutes). Table 2 outlines patrol response metrics. 

 

Table 2: Response Time Comparison 

 

Metric TICF Zones Control Zones 

Mean Response Time (min) 22 63 

Std Dev 5.4 12.6 

N (incidents) 405 392 

Source: Author (2025)   

 

Interview feedback also underscored increased community trust and perceived co-ownership of 

conservation. One respondent noted, “We finally feel like part of the solution, not just onlookers. 
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Poaching Reduction 

Overall, poaching incidents declined by 40% in TICF zones relative to control zones post- 

implementation (January 2023–December 2024). Figure 7 presents an Interrupted Time Series (ITS) 

analysis, showing a sharp inflection point at the TICF rollout. 

 

 

Figure 7: ITS Analysis of Monthly Poaching Incidents (2023–2024). Source: Author (2025). 

 

ITS coefficients indicate a statistically significant decline in intercept and slope (p < 0.01), suggesting 

an immediate drop in poaching and a sustained trend reduction. 

 

Table 3: Pre- and Post-TICF 

 

Period TICF Zones (Mean) Control Zones (Mean) p-

value 

Pre-TICF (2021–22) 3.4 3.6 0.62 

Post-TICF (2023–24) 2.0 3.8 <0.01 

Source: Author (2025) 

 

The Difference-in-Differences (DiD) analysis generated a significant treatment effect coefficient (δ) 

measuring -1.38 (p < 0.01) that remained significant with zone-level control variables. 

 

Zone 3 demonstrated a significant 59 per cent decrease in poaching because it had high levels of GPS 

collar deployment alongside community involvement. The decreased frequency of app users and poor 

cellular signals in Zone 9 led to a lower 22% drop rate. Qualitative findings corroborated these results. 

Residents and rangers confirmed through interviews that the increased levels of deterrence had occurred. 

According to a ranger, "The introduction of tracking technology spread through word of mouth because 

it monitored everything." Poachers stopped coming." The TICF coverage intensity overlay over poaching 

incidents in 2024 appears in Figure 8, which displays verified poaching locations through GIS mapping. 
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Figure 8: 2024 Poaching Incidents vs TICF Coverage Zones. Source: Author (2025). 

 

Zones with denser GPS collars, camera traps, and community reports saw near-elimination of high-risk 

areas. This spatial correspondence validates the synergy of TICF’s multi-modal approach. 

 

Table 4: Summary of Key Findings 

 

Dimension Outcome Significance Level 

Predictive Accuracy 89% (AUC = 0.91) *** 

Community Alert Share 78% of all reports *** 

Response Time Reduction 65% faster than control *** 

Poaching Decline 40% reduction (DiD, ITS) *** 

Note: *** = p < 0.01 

Source: Author (2025) 

 

Research findings validate the concept that implementing technology integration with community 

intelligence produces disruption of organised wildlife crime across private conservancies. The following 

part examines these implications in detail. 

 

Discussion 

Challenging Static Models of Conservation 

TICF fundamentally disrupts the assumptions of Conservation of Resources (COR) theory (Hobfoll et 

al., 2016; 2018), which posits that static defences trigger predictable cycles of resource loss as poachers 

adapt. At Solio Conservancy, conventional patrol strategies—rooted in COR’s reactive logic—allowed 

poachers to exploit fixed surveillance patterns, creating a stress-resource depletion loop where ranger 

responses lagged behind criminal innovation. In contrast, TICF’s dynamic design broke this cycle: 

algorithmic updates to patrol routes, informed by real-time community alerts (e.g., livestock herders’ 

reports of suspicious activity near Ngobit River), reduced hotspot mobility by 41% compared to control 

zones (p < 0.01), forcing poachers into suboptimal foraging behaviours. While control areas saw only an 

8% shift in hotspot locations (consistent with COR’s prediction of gradual adaptation), TICF-driven 

sectors experienced 23% displacement—not due to poacher evasion, but because the system pre-
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emptively redirected patrols to emerging risks (e.g., intercepting wire snares in regenerating Acacia 

thickets reported by community scouts). 

 

Critically, 78% of algorithmic updates were triggered by human behavioural data (e.g., irregular 

motorcycle movements flagged via the community app), demonstrating TICF’s reliance on socio-

technical feedback rather than sensor data alone. This dual-loop system—where machine learning adjusts 

to both ecological shifts (elephant herd movements) and anthropogenic signals (poacher tactic 

changes)—invalidates COR’s premise that conservation systems must trade resource loss for stability. 

By integrating Solio’s Indigenous observational expertise (e.g., Samburu tracking knowledge) into 

adaptive learning cycles, TICF demonstrates that resilience arises not from rigidity but from embedded 

reciprocity between human and algorithmic intelligence. 

 

Reconceptualising Human-Wildlife Dynamics 

The TICF advances conservation theory by operationalising socio-technological symbiosis—a 

framework that transcends the false dichotomy between techno-centric and community-led paradigms. 

At Solio Conservancy, where prior efforts oscillated between drone surveillance (2019–2021) and 

participatory patrols (2022), TICF resolved this divide by embedding Samburu pastoralists’ tracking 

expertise into predictive algorithms. For instance, community members using the TICF mobile app 

reported 214 geotagged incidents of suspicious activity near the Ngobit River buffer zone in 2023, 

enabling rangers to preemptively intercept 63% of attempted intrusions. These human-sourced data 

refined the AI’s spatial risk models, reducing false positives by 34% compared to the 2022 sensor-only 

system (p < 0.05). Critically, Solio’s community participants—not external technologists—drove this 

improvement: their knowledge of seasonal livestock movements and informal footpaths allowed the AI 

to distinguish poacher trails from legitimate herder routes, a task that baffled purely algorithmic models. 

As one elder noted in interviews, “Poachers now avoid the Acacia regeneration zones—they know our 

eyes are there,” a behavioural shift corroborated by a 41% decline in snare recoveries in community-

monitored sectors. 

 

This symbiosis challenges techno-deterministic narratives that privilege hardware over human agency. 

Unlike Solio’s earlier drone program, which faced community resistance over data extraction concerns, 

TICF’s hybrid design granted Samburu scouts co-ownership of the platform’s evolution. Rangers 

observed that poachers began exploiting gaps only in areas where app usage lagged—a tacit 

acknowledgement of the system’s human-centric deterrence. By integrating computational models with 

ethnographic knowledge (e.g., Samburu interpretations of elephant stress behaviours near waterholes), 

TICF achieved contextually accurate solutions unattainable through top-down surveillance. The 

framework thus redefines resilience: rather than “hardening” defences through static technology, it 

cultivates adaptive reciprocity— where algorithms learn from human observations, and communities 

refine traditional practices through real-time ecological feedback. 

 

Conclusion 

TICF represents a transformative shift in conservation practice, demonstrating at Solio Conservancy how 

predictive analytics, community co-design, and adaptive governance can synergise to counter poaching 

more effectively than siloed technological or community-centric approaches. By achieving 89% 

accuracy in predicting poaching hotspots and reducing incidents by 40%, TICF underscores the value of 

integrating machine learning with Indigenous ecological knowledge—such as Samburu tracking 

expertise—to outpace criminal adaptability. Crucially, Solio’s residents transitioned from passive 

stakeholders to core intelligence agents, improving threat response efficiency by 65% through real-time 

mobile app engagement. The framework’s open-source architecture and modular design enable 

scalability across diverse ecological and governance contexts, from Kenya’s savannahs to global 

biodiversity hotspots. However, sustaining this progress requires addressing systemic gaps, including 

climate- resilient predictive features for habitat shifts and equitable Global South leadership in 

conservation innovation to decolonise technology development. 
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To operationalise TICF’s potential, policymakers and conservancies must prioritise three areas: 

(1) Adopt TICF’s modular AI tools via platforms like Wildlife Insights, tailored to local contexts (e.g., 

elephant migration algorithms for Kenyan conservancies). Establish regional training hubs to build 

ranger capacity in data literacy and equip wildlife cybercrime units with digital forensics training to 

counter encrypted poacher networks. Governance must embed “Tech-Community Dialogues,” as piloted 

at Solio, where Indigenous leaders validate AI outputs and conservancy boards receive training to 

interpret hybrid data streams. (2) Transition from donor dependency to blended models. Replicate Solio’s 

community-led “Tech-Upgrade Fund,” financed by 5% ecotourism revenue, paired with public-private 

partnerships (PPPs) like Kenya’s Liquid Telecom-Sigfox IoT collaboration, which offset costs through 

CSR incentives. Governments should match grassroots conservation investments 1:1, reinforcing 

conservation as a public good. (3) Legislatively mandate community data sovereignty, ensuring 

anonymised Indigenous insights remain under local stewardship. Enact drone surveillance and biometric 

tracking regulations to balance efficacy with privacy, while incentivising corporate participation through 

tax rebates for conservation tech investments. 

 

To meaningfully integrate locals into the Technology-Integrated Conservation Framework (TICF), 

conservancies should establish Community Conservation Technicians (CCTs)— trained, compensated 

residents who bridge Indigenous knowledge and technological systems. CCTs would be recruited from 

conservancy-adjacent communities (e.g., Samburu pastoralists, reformed poachers) through 

participatory village nominations, prioritising individuals with deep ecological familiarity. Training 

would combine technical skills (mobile app use, sensor maintenance) with knowledge-exchange 

workshops where elders teach rangers and AI developers to interpret seasonal wildlife patterns, poacher 

tactics, and terrain-specific cues (e.g., distinguishing herder trails from illegal pathways). CCTs would 

then join hybrid decision- making bodies, such as monthly Tech-Community Review Committees, to 

validate AI- generated risk maps, co-design patrol routes, and annotate alerts with contextual insights 

(e.g., tagging high-risk zones during droughts). This transforms locals from passive informants into 

system architects, ensuring TICF respects socio-ecological nuances while mitigating algorithmic biases. 

 

CCTs’ participation must be reinforced via equitable incentives and iterative feedback loops. Stipends, 

funded through conservancy ecotourism revenue (e.g., 5% of Solio’s lodge income) or corporate 

partnerships, should align with performance metrics co-developed with communities, such as bonuses 

for reports leading to intercepted poaching attempts. Non- monetary rewards, like certification as 

“Wildlife Guardians” or priority job access, foster long- term engagement. Crucially, quarterly 

“Innovation Forums” would empower CCTs to propose system upgrades—as seen in Solio, where 

herders suggested cross-referencing radio signals with movement patterns after identifying poachers 

mimicking herder communications, reducing false negatives by 22%. Additionally, 30% of AI training 

data should derive from community-annotated inputs (e.g., tagged camera trap images), embedding local 

expertise directly into algorithmic learning. This dual approach—equitable compensation and 

participatory system evolution—ensures TICF remains culturally relevant and operationally agile, 

transforming conservation into a collaborative, adaptive practice. 

 

TICF redefines conservation as a dynamic, inclusive partnership—not a static defence. By harmonising 

predictive technology with human ingenuity, it offers a blueprint to counter biodiversity loss while 

centering equity in the algorithmic age. 
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